# A second take on Taylor series

Up a level : Power Series
Previous page : Proof that ratios of Fibonacci successive numbers tend to the Golden ratio
Next page : Lagrange´s error term  $\int\limits_0^x {f'(x)dx = f(x) - f(0)}$

i.e. that $f(x) = f(0) + \int\limits_0^x {f'(x)dx}$

We continue with the fact that $\int\limits_0^x {f''(x)dx = f'(x) - f'(0)}$

or $f'(x) = f'(0) + \int\limits_0^x {f''(x)dx}$

Now we substitute that into the expression for f(x) to get $\begin{gathered} f(x) = f(0) + \int\limits_0^x {\left( {f'(0) + \int\limits_0^x {f''(x)dx} } \right)dx} \hfill \\ \quad \quad = f(0) + f'(0)x + \int\limits_0^x {\int\limits_0^x {f''(x)dxdx} } \hfill \\ \end{gathered}$

We repeat this process again with $f''(x) = f''(0) + \int\limits_0^x {{f^{(3)}}(x)dx}$

This gives us $\begin{gathered} f(x) = f(0) + f'(0)x + \int\limits_0^x {\int\limits_0^x {f''(x)dxdx} } \hfill \\ \quad \quad = f(0) + f'(0)x + \int\limits_0^x {\int\limits_0^x {(f''(0) + \int\limits_0^x {{f^{(3)}}(x)dx} )dxdx} } \hfill \\ \quad \quad = f(0) + f'(0)x + \frac{{f''(0)}}{2}{x^2} + \int\limits_0^x {\int\limits_0^x {\int\limits_0^x {{f^{(3)}}(x)dx} dxdx} } \hfill \\ \end{gathered}$

Repeating this over and over again using the more general ${f^{(k)}}(x) = {f^{(k)}}(0) + \int\limits_0^x {{f^{(k + 1)}}(x)dx}$

We get $\begin{gathered} f(x) = f(0) + f'(0)x + \frac{{f''(0)}}{{2!}}{x^2} + ... + \frac{{{f^k}(0)}}{{k!}}{x^k} + \hfill \\ \quad \quad \quad + \int\limits_0^x {\int\limits_0^x {...\int\limits_0^x {{f^{(k + 1)}}(x){{(dx)}^{k + 1}}} } } \hfill \\ \end{gathered}$

I.e. the Taylor series expansion with k+1 terms plus some strange integral in the end. On the next page we will find an upper bound (biggest possible value) of the last term, called the error term. Up a level : Power Series
Previous page : Proof that ratios of Fibonacci successive numbers tend to the Golden ratio
Next page : Lagrange´s error term Last modified: Mar 10, 2019 @ 20:50