A second take on Taylor series

Up a level : Power Series
Previous page : Proof that ratios of Fibonacci successive numbers tend to the Golden ratio
Next page : Lagrange´s error term

Let us start with the observation that

\int\limits_0^x {f'(x)dx = f(x) - f(0)}  

i.e. that

f(x) = f(0) + \int\limits_0^x {f'(x)dx}  

We continue with the fact that

\int\limits_0^x {f''(x)dx = f'(x) - f'(0)}  

or

f'(x) = f'(0) + \int\limits_0^x {f''(x)dx}  

Now we substitute that into the expression for f(x) to get

\begin{gathered}   f(x) = f(0) + \int\limits_0^x {\left( {f'(0) + \int\limits_0^x {f''(x)dx} } \right)dx}  \hfill \\   \quad \quad  = f(0) + f'(0)x + \int\limits_0^x {\int\limits_0^x {f''(x)dxdx} }  \hfill \\  \end{gathered}  

We repeat this process with

f''(x) = f''(0) + \int\limits_0^x {{f^{(3)}}(x)dx}  

This gives us

\begin{gathered}  f(x) = f(0) + f'(0)x + \int\limits_0^x {\int\limits_0^x {f''(x)dxdx} }  \hfill \\   \quad \quad  = f(0) + f'(0)x + \int\limits_0^x {\int\limits_0^x {(f''(0) + \int\limits_0^x {{f^{(3)}}(x)dx} )dxdx} }  \hfill \\   \quad \quad  = f(0) + f'(0)x + \frac{{f''(0)}}{2}{x^2} + \int\limits_0^x {\int\limits_0^x {\int\limits_0^x {{f^{(3)}}(x)dx} dxdx} }  \hfill \\ \end{gathered}  

Repeating this over and over again using the more general

{f^{(k)}}(x) = {f^{(k)}}(0) + \int\limits_0^x {{f^{(k + 1)}}(x)dx}  

We get

\displaystyle \begin{array}{l}f(x)=f(0)+{f}'(0)x+\frac{{{f}''(0)}}{2}{{x}^{2}}+\ldots +\frac{{{{f}^{{(n)}}}(0)}}{{n!}}{{x}^{n}}+\ldots \\\quad \quad \quad +\int\limits_{0}^{x}{{\ldots \int\limits_{0}^{x}{{{{f}^{{(n+1)}}}(x)dx\ldots }}dx}}\end{array} 

I.e. the Taylor series expansion with k+1 terms plus some strange integral in the end. On the next page, we will find an upper bound (biggest possible value) of the last term, called the error term.

Up a level : Power Series
Previous page : Proof that ratios of Fibonacci successive numbers tend to the Golden ratio
Next page : Lagrange´s error termLast modified: Dec 28, 2023 @ 13:53