The integral of 1/sqrt(1-x^2) dx

Up a level : Integrals
Previous page : The integral of sin(x)cos(x)dx
Next page : The integral of 1/sqrt(x^2-1) dx

Let us find

\int {\frac{{dx}}{{\sqrt {1 - {x^2}} }}}

in a couple of different ways.

As an antiderivative

We may know the derivative of arcsine.  We can start with

y = {\sin ^{ - 1}}x

This may be rewritten as us

\sin y = x

Now we take let us differentiate this with respect to x, remembering that y is a function of x. This means that we need to apply the chain rule. We get

\cos (y)y' = 1

or

y' = \frac{1}{{\cos (y)}} = \frac{1}{{\cos ({{\sin }^{ - 1}}x)}}

But

\cos ({\sin ^{ - 1}}x) = \sqrt {1 - {x^2}}  

This we can see from looking at the unit circle below.

The arcsine of x gives us an angle, and the sine of that gives us the value along the horizontal axis – and in a unit circle, the vertical and horizontal values are connected through Pythagoras’s theorem to give the above result. This gives us that

({\sin ^{ - 1}}x)' = \frac{1}{{\sqrt {1 - {x^2}} }}

and thus that

\int {\frac{{dx}}{{\sqrt {1 - {x^2}} }}}  = {\sin ^{ - 1}}x + C

Below is a graph of the integrand vs. the integral.

By the substitution method

Now suppose we did not know this above derivative, then we could find the integral by doing the substitution

\left| \begin{gathered}   x = \sin y \hfill \\   dx = \cos y\;dy \hfill \\  \end{gathered}  \right.

This is because we may recognize that we then can use the trigonometric identity

{\sin ^2}\theta  + {\cos ^2}\theta  = 1

We get

\begin{gathered}   \int {\frac{{\cos y\;dy}}{{\sqrt {1 - {{\sin }^2}y} }}}  = \int {\frac{{\cos y\;dy}}{{\cos y}}}  \hfill \\   \quad  = \int {dy}  = y + C = {\sin ^{ - 1}}x + C \hfill \\ \end{gathered}  

as before.

The above generalized a bit

Now if we have

\int {\frac{{dx}}{{\sqrt {{a^2} - {x^2}} }}}  

then we can pull out a factor of a from the square root to get

\int {\frac{{dx}}{{a\sqrt {1 - {{\left( {\frac{x}{a}} \right)}^2}} }}}  

If we now let

\left| \begin{gathered}   w = x/a \hfill \\   dw = dx/a \hfill \\   adw = dx \hfill \\  \end{gathered}  \right.

we get

\begin{gathered}   \int {\frac{{adw}}{{a\sqrt {1 - {w^2}} }}}  = \int {\frac{{dw}}{{\sqrt {1 - {w^2}} }}}  \hfill \\   \quad  = {\sin ^{ - 1}}w + C = {\sin ^{ - 1}}\frac{x}{a} + C \hfill \\  \end{gathered}  

This we can get directly if we apply the rule

\int {f(px + q)dx = \frac{{F(px + q)}}{p} + C}  

to get

\begin{gathered}   \int {\frac{{dx}}{{\sqrt {{a^2} - {x^2}} }}}  = \int {\frac{{dx}}{{a\sqrt {1 - {{\left( {\frac{x}{a}} \right)}^2}} }}}  \hfill \\   \quad  = \frac{{\;\frac{1}{a}\;}}{{\;\frac{1}{a}\;}}{\sin ^{ - 1}}\frac{x}{a} = {\sin ^{ - 1}}\frac{x}{a} + C \hfill \\  \end{gathered}  

 

Up a level : Integrals
Previous page : The integral of sin(x)cos(x)dx
Next page : The integral of 1/sqrt(x^2-1) dxLast modified: Dec 28, 2023 @ 14:38