Integration of definite integrals using substitution

Up a level : Integrals
Previous page : Integration by substitution
Next page : Integration by parts

Say we want to find

I = \int\limits_1^3 {x{e^{3{x^2} + 4}}dx}   

We can here see that we can use the method of substitution since the derivative of the inner function 3x2+4 is x, except for a constant factor. We thus have

\left| {\begin{array}{*{20}{c}}  {u = 3{x^2} + 4} \\   {\frac{{du}}{{dx}} = 6x} \\   {du = 6x{\kern 1pt} dx} \\   {\frac{{du}}{6} = x{\kern 1pt} dx} \end{array}} \right. 

Thus gives us

\begin{gathered}  I = \int\limits_1^3 {x{e^{3{x^2} + 4}}dx}  = \int\limits_1^3 {{e^{3{x^2} + 4}}xdx}  \hfill \\  \quad  = \int\limits_{x = 1}^3 {{e^u}\frac{{du}}{6}}  = \frac{1}{6}\int\limits_{x = 1}^3 {{e^u}du}  =  \hfill \\  \quad  = \frac{1}{6}\left[ {{e^u}} \right]_{x = 1}^3 = \frac{1}{6}\left[ {{e^{3{x^2} + 4}}} \right]_{x = 1}^3 \hfill \\  \quad  = \frac{1}{6}\left( {{e^{3 \cdot {3^2} + 4}} - {e^{3 \cdot {1^2} + 4}}} \right) = \frac{1}{6}({e^{31}} - {e^7}) \hfill  \end{gathered}   

Here we need to indicate that we still, in the end, will integrate over the interval x=1 to x=3 even if our variable, for the moment, is x. This we can do by writing x=1 as our lower integration limit.

We could also have calculated the new integration limits using the substitution u=3x2+4.

I.e.

\left| \begin{gathered}  u(1) = 3 \cdot {1^2} + 4 = 7 \hfill \\   u(3) = 3 \cdot {3^2} + 4 =  31\quad \quad \quad  \hfill  \end{gathered}  \right. 

\begin{gathered}  I = \int\limits_1^3 {x{e^{3{x^2} + 4}}dx}  = \int\limits_1^3 {{e^{3{x^2} + 4}}xdx}  \hfill \\  \quad  = \int\limits_7^{31} {{e^u}\frac{{du}}{6}}  = \frac{1}{6}\int\limits_7^{31} {{e^u}du}  =  \hfill \\  \quad  = \frac{1}{6}\left[ {{e^u}} \right]_7^{31} = \frac{1}{6}\left[ {{e^{3{x^2} + 4}}} \right]_7^{31} \hfill \\  \quad  = \frac{1}{6}({e^{31}} - {e^7}) \hfill  \end{gathered}   

Up a level : Integrals
Previous page : Integration by substitution
Next page : Integration by partsLast modified: Dec 28, 2023 @ 14:30