Some important trig identities

Up a level : Euler's identity
Previous page : Euler's identity

We have that

{e^{i\theta }} = \cos \theta  + i\sin \theta 

If we instead have minus θ as the input, we get

{e^{ - i\theta }} = \cos ( - \theta ) + i\sin ( - \theta ) = \cos (\theta ) - i\sin ( - \theta )

If we now add the two equations, we get

{e^{i\theta }} + {e^{ - i\theta }} = 2\cos (\theta )

or

\cos (\theta ) = \frac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2}

If we subtract the equations instead, we get

{e^{i\theta }} - {e^{ - i\theta }} = 2isin(\theta )

or

sin(\theta ) = \frac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}

We can combine those to get

\displaystyle \tan \theta =\frac{{\sin \theta }}{{\cos \theta }}=\frac{{\left( {{{e}^{{i\theta }}}-{{e}^{{-i\theta }}}} \right)/2i}}{{\left( {{{e}^{{i\theta }}}+{{e}^{{-i\theta }}}} \right)/2i}}=\frac{1}{i}\cdot \frac{{{{e}^{{i\theta }}}-{{e}^{{-i\theta }}}}}{{{{e}^{{i\theta }}}+{{e}^{{-i\theta }}}}}

We can then multiply both the numerator and the denominator by e to get

\displaystyle \tan \theta =\frac{1}{i}\cdot \frac{{{{e}^{{2i\theta }}}-1}}{{{{e}^{{2i\theta }}}+1}}

These three formulas, for the sine, the cosine and the tangent, will be helpful in some calculus problems. We may, for example, take the derivative of, say sin(θ), to get

(sin(\theta ))' = (\frac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}})' = \frac{{i{e^{i\theta }} - ( - i){e^{ - i\theta }}}}{{2i}} = \frac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2} = \cos (\theta )

Just as we know it should be. It is not a derivation of the derivative of sin(θ), since we used the derivative of sin(θ) to find Euler’s identity, so it is a bit of circular reasoning.

Up a level : Euler's identity
Previous page : Euler's identityLast modified: May 21, 2025 @ 18:34